Genetic Diversity of some African Yam Bean Accessions in Ebonyi State Assessed using Inter-Simple Sequence Repeat (ISSR) markers.

Nnamani CV, Afiukwa CA, Oselebe HO, Igwe DO, Uhuo CA, Ihiba KO, Ezigbo E, Oketa CN, Nwankwo VO, Ukwueze CK and Nwaojiji CO

1Department of Applied Biology, Ebonyi State University, Abakaliki, Nigeria.
2Department of Biotechnology, Ebonyi State University, Abakaliki, Nigeria.
3Department of Crop Science and Land Scape management, Ebonyi State University, Abakaliki, Nigeria.

E-mail: afiukwa@yahoo.com

Received November 25, 2018
Accepted for publication June 21, 2019
Published July 7, 2019

Abstract

The genetic variability of 17 accessions of African yam bean [Sphenostylis stenocarpa (Hochst ex. A. Rich) Harms] collected from eight different local government areas of Ebonyi State, Nigeria, was evaluated using Inter-Simple Sequence Repeat (ISSR) markers. A total of 18 primers were used to access the degree of polymorphism in the ISSR loci out of which 14 primers produced clear amplification bands that were used for the diversity analysis. The 14 markers amplified a total of 107 alleles ranging from 3 in ISSR 825 to 11 in ISSR 811 and ISSR 826 with a mean of 8.27 alleles per primer. The polymorphic information content (PIC) values ranged from 0.38 to 0.88 with a mean value of 0.74. Twelve (12) out of the 14 ISSR primers (including ISSRs 811, 901, 835, 814, 818, 889, 826, 816, 890, 858, 827 and 825) demonstrated high potentials to discriminate among the African yam bean accessions by yielding PIC values as high as 0.66 to 0.88. A dendrogram of the ISSR data by Unweighted Pair Group Mean with Arithmetic (UPGMA) procedure clustered the 17 accessions into four major groups showing the genetic relatedness of the accessions and germplasm migrations among the producing LGAs of the State. The clustering pattern indicates that accessions from Abakaliki and Afikpo North LGAs of the State are more closely related, and so also are accessions from Ikwo and Afikpo South. The study revealed wide variation among the African yam bean accessions in Ebonyi State indicating ample opportunity for genetic improvement of the species.

Keywords: African yam bean, underutilized crop, genetic diversity, ISSR marker, Ebonyi State.

Introduction

African Yam Bean (Sphenostylis stenocarpa ex. A. Rich Harms) is a neglected and underutilized leguminous food crop belonging to the Fabaceae Family, sub Family Papilionoideae, tribe Phaseoleae and sub-tribe Phaseolinae (Azeke et al., 2005; Moyib et al., 2008) and is the most economically important species in the genus Sphenostylis (Machuka, 2001). It was formally grouped with the leguminous taxa within the genus Dolichos and Vigna, but later found to be the closest relation of genus Nesphostylis based on sheared morphological features (Milne-Redhead and Polhill, 1971; Potter and Doyle, 1994). It is an important grain legume in tropical Africa especially in Nigeria, Ivory Coast, Ghana, Togo, Gabon, Congo, Ethiopia and some parts of East Africa, where it is used as food or food components (Olasoji et al., 2011). The crop produces both aerial beans in pods and underground tuber, a
reason it is called a “yam bean”. Nigeria is very significant in the production of this crop, where extensive cultivation had been reported in the Eastern, Western and Southern parts of the country (Saka et al., 2004).

African yam bean (AYB) has immense nutritional values derived from both the seed and tuber. It has been found to contain about twice the protein content of other African root crops such as yam and sweet potato and has almost ten times the protein value of cassava with the quality of its protein very similar to that of soybeans (Norman and Cunningham, 2006). Total protein content up to 28%, total carbohydrates (78%), fat (2.5%), ash (2.8%) and crude fibre (12%) have been reported in the raw seeds of African yam bean (Kay, 1987; Edem et al., 1990; Ameh, 2007), while Duke (1981) reported about 0.6% protein, 85.3% total carbohydrates, 1.1% fibre and 2.2% ash in the root. The amino acid (lysine and methionine) values in AYB seeds are found to be higher than those of pigeon pea, cowpea, and bambara groundnut (Uguru and Madukaife, 2001), while the amino acid profile were comparable with that of whole chicken egg and can meet the daily requirement for protein according to Food and Agriculture Organization (FAO) and World Health Organization (WHO) (Ekpo, 2006). Saxon (1981) asserted that AYB is the most nutritionally rich out of the seventeen (17) tuberous legumes of international significance. The crop is cultivated for both the tuber that looks like elongated sweet potato but tastes more like Irish potato, and good yields of edible seeds above ground which are highly proteinous (Moyib et al., 2008).

This important food crop is rapidly going into extinction with declining yields perhaps owing to changing climate as one major factor. The adverse impact of climate change on crop yields requires that species with capacity to yield satisfactorily under unfavourable climate be developed. However, adequate understanding of genetic diversity and relatedness among varieties in a species is fundamental to successful genetic improvement (Perera, 2000; Zeng et al., 2004). There is therefore a need to properly characterize and identify this important food resource to allow development of appropriate breeding programme for improving the crop for adaptation to the changing climate.

Nevertheless, the conventional identification and selection techniques in the area based on seed coat features (colour and texture) and other phenotypic characteristics would not be efficient for proper selection of parents for successful improvement of the existing accessions. Effective genetic improvement relies on crosses between genetically diverse genotypes (Perera, 2000). Phenotypic trait expression is largely dependent on environmental conditions (Blum, 1988). So, choice based on phenotypic traits alone would not be efficient for selecting suitable divergent genotypes for meaningful breeding (Adewale et al., 2010). Molecular markers have proven to be highly effective tools for revealing variations within and among species (Matin et al., 2012; Causse et al., 1994).

Molecular markers are inheritable and detected DNA sequences at specific locations of the genome that can be used to identify specific genotypes (Ayres et al., 1997; Senior et al., 1998; Gurta et al., 1999; Kelly et al., 2003). There are various types of molecular markers such as Restriction Fragment Length Polymorphism (RFLP), Random Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP), Single Nucleotide Polymorphism (SNP), Directed Amplified Minisatellite DNA (DAMD) and Start Codon Targeted (SCoT) markers (Botstein et al., 1980; Heath et al. 1993; Amadou et al., 2001; Somers and Demmon, 2002; Ntundu et al., 2003; Collard and Mackill, 2009; Ho et al., 2017) but simple sequence repeats (SSRs) are the most frequently used in genetic diversity studies owing to its high efficiency and cost effectiveness (Matin et al., 2012). SSR makers and its variant Inter-Simple Sequence Repeat (ISSR) markers stand out in genotypic discrimination (high degree of polymorphism), co-dominance, reproducibility, abundance and wide distribution in the genome (Panaud et al., 1996; McCouch et al., 1997; Temnykh et al., 2000; Ni et al., 2002) which make it ideal for genetic diversity studies (Cho et al., 2000).

Simple sequence repeats also called microsatellites are short DNA sequences, usually 1 - 5 nucleotides long and repeated a variable number of times in tandem (Scribner and Pearce, 2000; Mburu and Hanotte, 2005). The SSR method of assessing genetic variation utilizes the high degree of sequence length variation resulting from certain
nucleotides repeats in the genome (Ubi, 2008). Microsatellite markers have shown high levels of polymorphism in many important crops including rice (Chen et al., 1997), wheat (Devos et al., 1995), barley (Liu et al., 1996), maize (Senior et al., 1998), sorghum (Brown et al., 1996), soybean (Akkaya et al., 1992) and beans (Yu et al., 1999). Information on the genetic characterization of AYB using molecular markers is scanty. However, Shitta et al. (2015) has successfully applied SSR while Ojuederie et al. (2014) used AFLP, while Moyib et al. (2008) employed RAPD markers to characterize genetic diversity in African yam bean.

Inter-Simple Sequence Repeat (ISSR) marker system was first describes by Zietkiewics et al. (1994) and Kantety et al. (1995). The ISSR analysis involves the PCR amplification of DNA regions between adjacent, inversely oriented microsatellites using a single simple sequence repeat (SSR)-containing primers. The technique can be applied for any species that contains a sufficient number and distribution of SSR motifs and has the advantage of not requiring genomic sequence data for its development (Gupta et al., 1994; Goodwin et al., 1997). Blair et al. (1999) opined that the primers used in ISSR can be based on any di-, tri-, tetra, or penta-nucleotide SSR motifs found at SSR loci, which confers a wide range of possible amplification products on ISSR markers. This marker type does not only generate larger numbers of polymorphisms per primer owing to its ability to target variable regions in the genome, but is found to be more consistent than RAPD (Hantula et al., 1996). An ISSR marker produces a number of amplification bands that reflects the relative occurrence of a given SSR motif in the genome and therefore provides an estimate of the SSR abundance in the genome (Blair et al., 1999). The ISSR technique has been used to evaluate genetic diversity in maize (Kantety, et al., 1995), to successfully study the frequency and level of polymorphism of different SSR loci and fingerprinting in rice and potato (Blair, et al., 1999; McGregor et al., 2000).

This study was intended to reveal the genetic differences and relatedness among AYB accessions cultivated in Ebonyi State and to associate the result with seed coat features. This is the first report of molecular characterization of this crop species in the South East of Nigeria. The result could be a useful tool for developing suitable breeding program for AYB improvement in the region.

Materials and Methods

Seed collection and seed coat features
A total of seventeen (17) AYB accessions were collected from farmers in eight (8) Local Government Areas (L.G.A) of Ebonyi State for the study. Their source L.G.A. and code numbers are presented in Table 1. The code numbers are 6 alphabets with the first 2 letters (EB) indicating Ebonyi State, the next 2 letters reflect the L.G.A. while the last lowercase 2 letters denote the exact community within the L.G.A. where the seeds were collected.

DNA Extraction
Genomic DNA was extracted from approximately 100 mg of the powdered AYB seed endosperm using Zymo Research plant/seed DNA isolation kit (Zymo Research Corporation, USA), following the manufacturer’s instructions.

Polymerase Chain Reaction (PCR) and agarose gel electrophoresis
The PCR amplification was carried out in a total reaction volume of 25µL consisting of 100ng of genomic DNA, 2.5µl of 10x Taq Buffer, 1.5µl of 50mM MgCl₂, 2.0µl of 2.5mM dNTPs, and 0.2µl 500U Taq DNA polymerase (all Bioline), 1.0µl of 10µM of each ISSR primer and made up to 25µl with diethylpyrocarbonate (DEPC)-treated water (Invitrogen Corporation). The list of ISSR primers, their sequences, GC content and annealing temperatures are presented in Table 2. The PCR cycling profile comprised of an initial denaturation at 94°C for 5 min., followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 55°C, primer extension at 72°C for 1min, and a final extension at 72°C for 10 min. The PCR products (6 µl each) were resolved in a 1.5 % agarose gel
containing 0.5 mg/ml ethidium bromide and photographed on Transilluminator UV light (Fotodyne Incorporated, Analyst Express, USA).

Data analyses

The gel results were scored for presence (1) or absence (0) of specific bands or allele to generate binary data matrix of the ISSR markers. The resulting data matrix was used for phylogenetic reconstruction using Unweighted Pair Group Mean with Arithmetic (UPGMA) and analysed for dissimilarity index using DARwin software version 5.0 (Perrier et al., 2006). The data matrix was also subjected to Principal component analysis (PCA) using GenAlex 6.41 software (Peakell et al., 2006) to cluster the African yam bean accessions according to their genetic similarities. Furthermore, genetic diversity parameters including total number of alleles, allele frequency, major allele frequency (i.e. allele with the highest occurrence), accession-specific alleles, gene diversity and polymorphism information content (PIC) were equality computed using PowerMarker version 3.25 (Liu and Muse, 2005).

Results and Discussion

A total of 14 ISSR primers were used to access the degree of genetic diversity in 17 accessions of African yam bean [Sphenostylis stenocarpa (Hochst ex. A. Rich) Harms] out of which 14 primers that produced scorable amplification bands were selected for the analyses (Fig. 1). The 14 markers amplified a total of 107 alleles ranging from 3 in ISSR 825 to 11 in ISSR 811 and ISSR 826 with a mean of 8.27 alleles per primer. The polymorphic information content (PIC) values ranged from 0.38 to 0.88 with a mean value of 0.74. Twelve (12) out of the 14 ISSR primers (including 811, 901, 835, 814, 818, 889, 826, 816, 890, 858, 827 and 825) yielded PIC values as high as between 0.66 to 0.88. The obtained gene diversity values ranged from 0.44 to 0.89 with a mean value of 0.77 while major allele frequency was in the range of 0.18 to 0.71 with a mean value of 0.36 (Table 3). The allele count spanned between 1 and 12 while its frequency ranged from 0.0588 and 0.7059. Of the 14 markers, ISSR 811, ISSR 826, UBC 814 and ISSR 818 showed higher values of diversity indices while ISSR 856 followed by ISSR 888 were the poorest (Table 3).

A dendrogram of the ISSR data using UPGMA procedure clustered the 17 accessions into four major groups at the genetic distances of 20.00, 29.00, 30.00 and 31.00, respectively (Fig. 2). Group I that was resolved at a genetic distance of 31.00 consisted of accessions from Abakaliki and Afikpo North LGAs of the state; Group II (at a distance of 30.00) contained a mixture of accessions from four LGAs (Izzi, Ishielu, Onicha and Ezza South); Group III having a genetic distance of 29.00, comprised of only accessions from Ikwo and Afikpo South; while Group IV at a distance of 20.00 was found composing of accessions from Ishielu and Ikwo.

Principal component analysis of the ISSR data also clustered the 17 accessions into four related groups different from the pattern revealed by the dendrogram. Cluster I had 4 accessions from 3 LGAs (Ishielu, Izzi and Onicha); Cluster II comprised of 3 accessions each from a different LGA (Ezza South, Abakaliki and Afikpo North); Cluster III contained 5 accessions from 3 LGAs (Ishielu, Ikwo and Afikpo South) including all accessions from Ikwo; while Cluster IV was made up of 4 accessions all from Afikpo (Fig. 3).

Estimation of the degree of genetic diversity in populations of crop species using molecular markers has become fundamental in plant breeding, identification and conservation of superior genotypes (Saeed et al., 2011; Upadhyaya et al., 2008). Inter-simple sequence repeat (ISSR) markers are highly reproducible and were found to provide highly polymorphic fingerprints (Zietkiewicz et al., 1994; Kojima et al., 1998; Bornet and Branchard, 2001). This marker system has been successfully used for the assessment of genetic diversity in corn (Kantety et al., 1995), for cultivar identification in oilseed rape and potatoes (Charters et al., 1996, Bornet et al., 2002), for chromosomal mapping (Kojima et al., 1998) and for analysis of linkage to a specific gene (Akagi et al., 1996a).
In this study, polymorphic ISSR markers were used to assess the level of genetic divergence among 17 African yam bean (AYB) accessions collected from around Ebonyi State of Nigeria and to identify markers appropriate for differentiating and possible fingerprinting of the accessions. The ISSR markers demonstrated high efficacy for discriminating the African yam bean genotypes, which is important for any successful improvement breeding programme on the species (Kronstad, 1986; Govindaraj et al., 2015; Thakur et al., 2016). Polymorphism information (PIC) value denotes the relative informativeness and discriminatory capacity of a marker (Nachimuthu et al., 2015). In this study, the values ranged from 0.38 to 0.88 of which as high as 10 of the 14 markers (about 71%) yielded PIC values above 0.70 out of a maximum value of 1.00. The markers UBC 826 (PIC, 0.875) was the most discriminating of the 14 ISSR markers, followed by ISSR 811 (PIC, 0.860) and UBC 814 (PIC, 0.837), while ISSR 856 was the least discriminating (PIC, 0.384) followed by ISSR 888 (PIC, 0.529). The Ebonyi AYB collection appears to have a very broad diversity. Ojuederie et al. (2014) had earlier reported higher values of PIC (0.945 to 0.963) from 40 AYB accessions assessed with just 4 primer combinations of Amplified Fragment Length Polymorphism (AFLP) markers. The higher values of PIC reported by these authors may partly be a reflection of the superiority of AFLP markers over SSR markers (Saker et al., 2005). A similar high degree of diversity in AYB was reported by Shitta et al. (2015) with PIC values ranging from 0.6691 to 0.7791. With the high capacity of the evaluated markers to amplify polymorphic loci in African yam bean, ISSR markers may be usefully exploited for genetic fingerprinting, gene mapping and development of marker-assisted selection (MAS) technology for improvement and germplasm conservation of species (Shete et al., 2000; Hadi et al., 2014).

The wide variation revealed among the African yam bean accessions in Ebonyi State in the present study indicates ample opportunity for genetic improvement of the species (Ojuederie et al., 2014). The UPGMA genetic relationship tree clustered the 17 AYB accessions into four distinct groups which did not strictly reflect the geographic origin of the accessions. In the dendrogram, all the accessions from Afikpo North LGA (EBANmg, EBANao, EBANaa and EBANea) and Abakaliki LGA (EBABam and EBABac) appeared more closely related and were cluster together in Group I. It is noteworthy here that none of the accessions from these two LGAs appeared in any other group. Two out of the 3 accessions from Ikwo LGA (EBIKok and EBIKno) were found to be genetically close to the accessions from Afikpo South LGA (EBASoe and EBASem) and were clustered together in Group III, while the remaining one accession from Ikwo (EBIKea) is associated with one of the two accessions from Ishielu LGA (EBISlo) in Group IV. Accessions from Afikpo South were found only in Group III. Group II comprised of accessions from diverse locations (four LGAs). Two of the 5 accessions in this cluster are from Izzi LGA (EBIZib and EBIZwa) while each of the remaining 3 accessions were from Ishielu (EBISla), Onicha (EBONos) and Ezza South (EBESom) suggesting that the accessions in these areas may have a common origin (Rungnoi et al., 2012; Ojuederie et al., 2014). This study indicated that African yam bean may have been introduced several times in Ebonyi from different places. According to the genetic relationship structure in the dendrogram, accessions grown in some Local Government Areas are distinct from those cultivated in other LGAs of the same State. The study did therefore reveal a specific centre of divergence of the species in the state.

Although the Principal Component Analysis revealed somewhat a different pattern of genetic relatedness among the Ebonyi accessions of African yam bean, it also supported that the accessions are highly divergent with no specific centre of divergence within Ebonyi. Therefore, the species may have been introduced in Ebonyi from different places more than one time.

Conclusion

This study revealed wide variation African yam bean accessions cultivated in Ebonyi State of Nigeria and showed that the crop could have been introduced into Ebonyi more than once and from different regions. We report here that ISSR markers are highly efficient in characterizing the genetic differences among AYB accessions and could be exploited for possible germplasm fingerprinting and marker-assisted selection of useful genes in the species.
Acknowledgements

The authors are grateful to the Nigeria’s Tertiary Education Trust Fund (TETFund) for funding this research. We are also thankful to the Ebonyi State University Biotechnology Research and Development Centre (EBSU-BRDC) for technical support and provision of the laboratory facilities.

Conflict of Interests

There is no conflict of interest among the authors.

Tables, Figures and Charts

Table 1: List of African Yam Bean Accessions Evaluated for Genetic Diversity, their source L.G.A.

<table>
<thead>
<tr>
<th>S/N</th>
<th>State</th>
<th>Source Local L.G.A.</th>
<th>Community</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ebonyi</td>
<td>Abakaliki</td>
<td>Achinwamgboko</td>
<td>EBABac</td>
</tr>
<tr>
<td>2</td>
<td>Ebonyi</td>
<td>Abakaliki</td>
<td>Amachi</td>
<td>EBABam</td>
</tr>
<tr>
<td>3</td>
<td>Ebonyi</td>
<td>Afikpo North</td>
<td>Amogu Akpoha</td>
<td>EBANaa</td>
</tr>
<tr>
<td>4</td>
<td>Ebonyi</td>
<td>Afikpo North</td>
<td>Akpoha</td>
<td>EBANao</td>
</tr>
<tr>
<td>5</td>
<td>Ebonyi</td>
<td>Afikpo North</td>
<td>Ezimba Akpoha</td>
<td>EBANea</td>
</tr>
<tr>
<td>6</td>
<td>Ebonyi</td>
<td>Afikpo North</td>
<td>Mbom</td>
<td>EBANmg</td>
</tr>
<tr>
<td>7</td>
<td>Ebonyi</td>
<td>Afikpo South</td>
<td>Edah</td>
<td>EBASem</td>
</tr>
<tr>
<td>8</td>
<td>Ebonyi</td>
<td>Afikpo South</td>
<td>Owutu Edah</td>
<td>EBASoe</td>
</tr>
<tr>
<td>9</td>
<td>Ebonyi</td>
<td>Ezza South</td>
<td>Onueke</td>
<td>EBESom</td>
</tr>
<tr>
<td>10</td>
<td>Ebonyi</td>
<td>Ikwo</td>
<td>Eka-Awoke</td>
<td>EBKea</td>
</tr>
<tr>
<td>11</td>
<td>Ebonyi</td>
<td>Ikwo</td>
<td>Nsuka-Ettam</td>
<td>EBKno</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ebonyi</td>
<td>Ikwo</td>
<td>Okpuitumo</td>
<td>EBKok</td>
</tr>
<tr>
<td>13</td>
<td>Ebonyi</td>
<td>Ishielu</td>
<td>Labassa</td>
<td>EBIsi</td>
</tr>
<tr>
<td>14</td>
<td>Ebonyi</td>
<td>Ishielu</td>
<td>Labassa Okpoto</td>
<td>EBIsio</td>
</tr>
<tr>
<td>15</td>
<td>Ebonyi</td>
<td>Izi</td>
<td>Iboko</td>
<td>EBIZib</td>
</tr>
<tr>
<td>16</td>
<td>Ebonyi</td>
<td>Izi</td>
<td>Waka</td>
<td>EBIZwa</td>
</tr>
<tr>
<td>17</td>
<td>Ebonyi</td>
<td>Onicha</td>
<td>Oshiri</td>
<td>EBONos</td>
</tr>
</tbody>
</table>

Table 2: List and Sequences of ISSR Primers used to Study Genetic Diversity of African Yam Bean (AYB) Accessions from Ebonyi State, Nigeria

<table>
<thead>
<tr>
<th>S/N</th>
<th>Primer name</th>
<th>Primer sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISSR811</td>
<td>ACACACACACACACT</td>
</tr>
<tr>
<td>2</td>
<td>ISSR901</td>
<td>AGAGAGAGAGAGAGAGYC</td>
</tr>
<tr>
<td>3</td>
<td>UBC835</td>
<td>CTCTCTCTCTCTCTCTCAT</td>
</tr>
<tr>
<td>4</td>
<td>UBC814</td>
<td>ACACACACACACACACC</td>
</tr>
<tr>
<td>5</td>
<td>ISSR818</td>
<td>ACACACACACACACCG</td>
</tr>
<tr>
<td>6</td>
<td>ISSR889</td>
<td>GAGAGAGAGAGAGAGATT</td>
</tr>
<tr>
<td>7</td>
<td>UBC826</td>
<td>AGAGAGAGAGAGAGGC</td>
</tr>
<tr>
<td>8</td>
<td>UBC816</td>
<td>GAGAGAGAGAGAGGC</td>
</tr>
<tr>
<td>9</td>
<td>ISSR 890</td>
<td>GAAGAAGAAGAAGAAGAAGAA</td>
</tr>
<tr>
<td>10</td>
<td>ISSR 858</td>
<td>CACACACACACACARY</td>
</tr>
<tr>
<td>11</td>
<td>ISSR827</td>
<td>CAACAATGGCTACACCC</td>
</tr>
<tr>
<td>12</td>
<td>ISSR825</td>
<td>AGACATGGCGAACCATCG</td>
</tr>
<tr>
<td>13</td>
<td>ISSR856</td>
<td>ACCATGGCTACACCGAC</td>
</tr>
<tr>
<td>14</td>
<td>ISSR 888</td>
<td>ACCATGGCTACACCGCG</td>
</tr>
</tbody>
</table>
Fig. 1: A representative amplification profiles of African yam bean DNA with ISSR markers. Lane M = 100 bp DNA ladder. 1 to 17 = the 17 African yam bean accessions.
Table 3: Genetic diversity parameter values generated with ISSR markers in African yam bean accessions from Ebonyi State

<table>
<thead>
<tr>
<th>Marker</th>
<th>Major allele frequency</th>
<th>Allele No</th>
<th>Gene diversity</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSR811</td>
<td>0.2353</td>
<td>11</td>
<td>0.8720</td>
<td>0.8599</td>
</tr>
<tr>
<td>ISSR901</td>
<td>0.5294</td>
<td>9</td>
<td>0.6920</td>
<td>0.6759</td>
</tr>
<tr>
<td>UBC835</td>
<td>0.3529</td>
<td>7</td>
<td>0.7958</td>
<td>0.7713</td>
</tr>
<tr>
<td>UBC814</td>
<td>0.2941</td>
<td>10</td>
<td>0.8512</td>
<td>0.8372</td>
</tr>
<tr>
<td>ISSR818</td>
<td>0.4118</td>
<td>10</td>
<td>0.7889</td>
<td>0.7734</td>
</tr>
<tr>
<td>ISSR889</td>
<td>0.2941</td>
<td>9</td>
<td>0.8235</td>
<td>0.8032</td>
</tr>
<tr>
<td>UBC826</td>
<td>0.1765</td>
<td>11</td>
<td>0.8858</td>
<td>0.8752</td>
</tr>
<tr>
<td>UBC816</td>
<td>0.3529</td>
<td>7</td>
<td>0.7612</td>
<td>0.7275</td>
</tr>
<tr>
<td>ISSR890</td>
<td>0.3529</td>
<td>9</td>
<td>0.8097</td>
<td>0.7902</td>
</tr>
<tr>
<td>ISSR858</td>
<td>0.3529</td>
<td>6</td>
<td>0.7474</td>
<td>0.7076</td>
</tr>
<tr>
<td>ISSR827</td>
<td>0.4706</td>
<td>5</td>
<td>0.6990</td>
<td>0.6595</td>
</tr>
<tr>
<td>ISSR825</td>
<td>0.2941</td>
<td>6</td>
<td>0.7958</td>
<td>0.7661</td>
</tr>
<tr>
<td>ISSR856</td>
<td>0.7059</td>
<td>3</td>
<td>0.4429</td>
<td>0.3839</td>
</tr>
<tr>
<td>ISSR888</td>
<td>0.5882</td>
<td>4</td>
<td>0.5813</td>
<td>0.5290</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.3647</td>
<td>8.27</td>
<td>0.7659</td>
<td>0.7399</td>
</tr>
</tbody>
</table>

Fig. 2: Dendrogram of African yam bean accessions from Ebonyi State generated with 14 ISSR markers
Fig. 3: Principal component analysis of African yam bean accessions from Ebonyi State generated with 14 ISSR markers

References

Bornet B., Muller C., Paulus F. and Branchard M. (2002). High informative nature of inter simple sequence repeat (ISSR) sequences amplified with tri- and tetra-nucleotide primers from cauliflower (*Brassica oleracea* var. botrytis L.) DNA. *Genome* 45: 890-896.

bean using SSR markers derived from cowpea. Plant Genetic Resources 1-7.

